BFF R-CNN: Balanced Feature Fusion for Object Detection

نویسندگان

چکیده

In the neck part of a two-stage object detection network, feature fusion is generally carried out in either top-down or bottom-up manner. However, two types imbalance may exist: model and gradient region interest extraction layer due to scale changes objects. The deeper network is, more abstract learned features are, that say, semantic information can be extracted. extracted image background, spatial location, other resolution are less. contrast, shallow learn little information, but lot location information. We propose Both Ends Centre Multiple Layers (BEtM) method solve problem Multi-level Region Interest Feature Extraction (MRoIE) problem. combination with Region-based Convolutional Neural Network (R-CNN) framework, our Balanced Fusion (BFF) offers significantly improved performance compared Faster R-CNN architecture. On MS COCO 2017 dataset, it achieves an average precision (AP) 1.9 points 3.2 higher than those Pyramid (FPN) framework Generic Extractor (GRoIE) respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ME R-CNN: Multi-Expert R-CNN for Object Detection

Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...

متن کامل

R-CNN for Small Object Detection

Existing object detection literature focuses on detecting a big object covering a large part of an image. The problem of detecting a small object covering a small part of an image is largely ignored. As a result, the state-of-the-art object detection algorithm renders unsatisfactory performance as applied to detect small objects in images. In this paper, we dedicate an effort to bridge the gap....

متن کامل

Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment

R-CNN style methods are sorts of the state-of-the-art object detection methods, which consist of region proposal generation and deep CNN classification. However, the proposal generation phase in this paradigm is usually time consuming, which would slow down the whole detection time in testing. This paper suggests that the value discrepancies among features in deep convolutional feature maps con...

متن کامل

LCNN: Low-level Feature Embedded CNN for Salient Object Detection

In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we r...

متن کامل

Cascade R-CNN: Delving into High Quality Object Detection

In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2022

ISSN: ['0916-8532', '1745-1361']

DOI: https://doi.org/10.1587/transinf.2021edp7261